Upper Bounds on the Number of Indexes ===================================== We obtained, by exhaustive search or by approximations, upper bounds on the number of indexes needed to implement wco algorithms in dimension up to d=8. In this file we leave a concrete sets of orders we found that work on each case. Remember that the letters mean: W = worst-case (all) C = circular B = bidirectional T = trie switching These are the combinations and the upper bounds (the lower bounds in the paper come from the formulas given in Section 6). The numbers in brackets denote approximations, so the actual number of needed indexes could be lower. The other numbers are exact. For W, CW, and TW, we derived exact upper bounds in the paper, which we verified with our program up to some value of d. d CBW CW W CBTW CTW TW 1 1 1 1 1 1 1 2 1 1 2 1 1 2 3 1 2 6 1 2 6 4 2 6 24 2 4 12 5 5 24 120 5 8 30 6 10 120 720 7 12 60 7 [37] 720 5040 [13] 25 140 8 [168] 5040 40320 [25] 50 280 Indexes CBW and CBTW -------------------- d = 1: 1 order 1 d = 2: 1 order 1,2 d = 3: 1 order 1,2,3 d = 4: 2 orders 1,2,3,4 1,2,4,3 d = 5: 5 orders 1,2,3,4,5 1,2,3,5,4 1,2,4,3,5 1,2,5,4,3 1,3,5,2,4 d = 6 for CBW: 10 orders 1,2,3,4,5,6 1,2,4,3,6,5 1,2,5,4,6,3 1,2,6,5,3,4 1,3,2,5,6,4 1,3,4,6,2,5 1,3,5,2,4,6 1,4,2,6,3,5 1,4,5,3,2,6 1,5,4,2,3,6 d = 6 for CBWT: 7 orders 1,2,3,4,5,6 1,2,3,5,6,4 1,2,4,5,6,3 1,2,6,4,3,5 1,3,4,2,6,5 1,4,3,6,2,5 1,4,5,2,3,6 d = 7 for CBW, approximation: 37 orders 1,3,6,4,5,2,7 1,4,6,2,5,3,7 1,2,3,6,7,5,4 1,3,4,2,6,7,5 1,2,7,4,5,3,6 1,5,3,2,4,7,6 1,4,3,7,2,5,6 1,2,3,7,6,4,5 1,2,6,3,4,7,5 1,4,2,3,6,5,7 1,3,5,4,2,7,6 1,2,5,7,3,4,6 1,3,7,2,6,5,4 1,6,5,3,4,2,7 1,2,6,5,3,7,4 1,5,2,4,6,3,7 1,5,2,3,7,4,6 1,3,2,7,5,6,4 1,5,4,3,2,6,7 1,3,5,2,4,6,7 1,2,5,4,7,6,3 1,4,3,2,7,6,5 1,4,7,5,3,2,6 1,2,4,6,3,5,7 1,2,4,5,6,7,3 1,3,4,7,5,2,6 1,2,7,5,4,3,6 1,3,6,5,2,4,7 1,4,2,6,3,7,5 1,5,3,4,7,2,6 1,6,3,2,5,4,7 1,3,2,6,4,7,5 1,2,5,6,4,3,7 1,2,6,3,5,4,7 1,3,7,4,2,6,5 1,5,3,4,6,2,7 1,2,7,3,6,5,4 d = 7 for CBWT, approximate: 13 orders 1,4,6,3,7,2,5 1,6,2,3,5,4,7 1,2,4,6,7,5,3 1,3,4,7,2,6,5 1,3,6,5,4,2,7 1,2,3,4,6,5,7 1,2,5,3,7,4,6 1,5,4,2,3,6,7 1,4,2,5,6,3,7 1,5,4,3,2,7,6 1,3,2,7,5,4,6 1,2,7,6,5,3,4 1,3,4,6,2,5,7 d = 8 for CBW, approximate: 168 orders 1,4,2,8,6,3,5,7 1,6,5,4,2,8,3,7 1,4,5,2,7,3,8,6 1,2,6,5,8,3,7,4 1,3,4,8,7,6,2,5 1,2,8,3,4,6,7,5 1,3,5,2,7,6,4,8 1,6,2,3,4,5,7,8 1,5,7,6,3,2,4,8 1,2,7,8,4,5,6,3 1,7,2,6,4,3,5,8 1,7,4,5,6,3,2,8 1,2,7,5,8,6,4,3 1,4,5,3,2,8,7,6 1,3,7,2,4,8,6,5 1,2,4,3,7,6,5,8 1,3,7,8,5,2,6,4 1,4,7,3,5,8,2,6 1,3,2,5,6,7,8,4 1,5,2,4,3,7,8,6 1,7,4,6,5,2,3,8 1,3,8,5,2,4,7,6 1,5,4,8,3,6,2,7 1,3,7,2,8,4,5,6 1,5,3,7,2,4,6,8 1,2,5,7,6,4,8,3 1,2,6,3,5,7,4,8 1,2,8,7,5,4,6,3 1,2,7,4,8,3,5,6 1,2,4,3,6,7,8,5 1,5,8,4,3,2,7,6 1,4,5,2,3,7,6,8 1,3,6,8,2,7,5,4 1,7,6,2,4,5,3,8 1,3,7,5,8,6,2,4 1,5,3,4,7,6,2,8 1,4,6,3,7,5,2,8 1,3,6,8,5,4,2,7 1,2,4,6,3,8,7,5 1,4,7,5,6,2,3,8 1,5,4,8,2,3,6,7 1,2,7,8,5,4,3,6 1,6,4,5,2,3,8,7 1,3,4,7,5,2,8,6 1,3,5,6,4,8,2,7 1,4,6,8,7,2,3,5 1,2,3,4,7,8,6,5 1,2,7,5,6,8,3,4 1,6,4,2,7,5,3,8 1,3,6,5,8,2,4,7 1,3,2,6,5,4,7,8 1,4,7,6,5,3,2,8 1,2,8,7,4,5,3,6 1,5,2,4,8,6,3,7 1,3,8,6,2,4,7,5 1,5,6,2,4,3,8,7 1,2,3,7,4,6,8,5 1,2,3,6,4,5,8,7 1,6,2,5,8,3,4,7 1,5,4,2,3,8,7,6 1,4,3,5,2,7,8,6 1,3,5,4,7,2,6,8 1,2,8,5,7,3,4,6 1,4,8,6,2,7,3,5 1,2,3,5,6,4,7,8 1,3,2,7,8,4,6,5 1,2,5,8,3,7,4,6 1,3,8,2,6,4,5,7 1,5,3,7,4,2,8,6 1,4,5,2,8,3,6,7 1,7,6,2,3,4,5,8 1,3,7,5,2,4,6,8 1,2,5,8,6,7,3,4 1,2,4,8,5,6,3,7 1,6,7,3,2,4,5,8 1,4,8,3,2,6,7,5 1,3,2,7,4,8,5,6 1,4,2,8,3,7,6,5 1,4,2,6,8,5,3,7 1,2,5,6,7,4,8,3 1,6,3,5,8,4,2,7 1,6,4,7,2,3,5,8 1,2,3,6,5,7,8,4 1,3,5,2,7,6,8,4 1,3,5,2,6,7,4,8 1,3,4,5,6,2,8,7 1,5,2,4,6,3,7,8 1,2,5,7,6,8,4,3 1,4,7,2,5,8,3,6 1,2,4,8,6,3,5,7 1,4,3,2,8,7,5,6 1,5,4,3,2,7,6,8 1,4,2,6,3,7,8,5 1,7,6,4,3,5,2,8 1,4,6,5,2,8,3,7 1,4,6,3,8,7,2,5 1,2,8,5,3,4,7,6 1,2,6,8,3,5,4,7 1,4,6,2,5,3,8,7 1,3,8,7,4,5,2,6 1,2,4,3,7,5,6,8 1,3,8,4,6,7,2,5 1,4,5,3,6,2,8,7 1,3,2,5,7,6,4,8 1,5,4,6,8,2,3,7 1,2,6,3,7,5,8,4 1,6,5,2,8,4,3,7 1,3,5,6,8,2,7,4 1,5,3,2,8,7,4,6 1,3,2,4,7,5,8,6 1,2,5,7,8,3,4,6 1,4,3,5,7,2,6,8 1,5,8,3,4,2,7,6 1,3,7,6,4,2,8,5 1,2,8,4,3,6,5,7 1,7,5,4,3,6,2,8 1,4,2,3,6,8,7,5 1,3,6,8,2,5,4,7 1,6,7,2,3,5,4,8 1,2,4,7,5,3,8,6 1,5,7,3,2,8,4,6 1,6,2,3,4,8,5,7 1,7,6,3,4,2,5,8 1,2,6,5,8,7,4,3 1,2,6,4,3,8,5,7 1,6,3,4,5,2,8,7 1,2,3,4,7,5,6,8 1,5,3,8,2,4,6,7 1,2,8,5,7,6,3,4 1,3,7,8,2,6,4,5 1,2,4,6,8,3,7,5 1,5,6,2,7,3,4,8 1,3,8,6,4,2,5,7 1,5,3,4,8,7,2,6 1,6,3,2,4,5,7,8 1,6,5,7,3,2,4,8 1,5,3,7,4,2,6,8 1,2,6,3,5,4,8,7 1,4,3,7,8,2,5,6 1,2,7,3,6,4,8,5 1,4,5,3,2,6,7,8 1,5,2,6,7,4,3,8 1,3,4,2,8,5,7,6 1,2,8,6,5,4,7,3 1,2,4,5,7,6,3,8 1,4,6,3,5,7,2,8 1,4,3,7,5,8,2,6 1,3,8,6,4,5,2,7 1,4,5,3,7,2,8,6 1,5,4,3,6,2,8,7 1,2,6,5,7,8,3,4 1,2,3,8,7,4,5,6 1,2,4,3,8,5,6,7 1,2,5,7,8,6,3,4 1,4,8,2,5,7,3,6 1,2,3,4,5,6,7,8 1,3,8,5,6,4,2,7 1,2,8,4,7,5,3,6 1,5,2,8,7,4,3,6 1,6,4,3,5,2,7,8 1,2,5,6,3,8,7,4 1,6,8,5,4,3,2,7 1,2,5,6,4,8,7,3 1,5,2,6,4,7,3,8 1,3,5,8,4,7,2,6 1,4,8,2,7,6,3,5 1,2,7,5,8,3,4,6 1,3,4,5,2,7,8,6 d = 8 for CBWT, approximate: 25 orders 1,3,6,7,8,4,2,5 1,2,3,7,5,4,6,8 1,4,3,8,5,6,2,7 1,4,7,8,2,3,5,6 1,5,8,2,6,4,3,7 1,6,2,3,4,5,8,7 1,4,2,7,5,6,3,8 1,2,6,8,7,3,5,4 1,5,6,7,4,2,3,8 1,3,2,5,8,4,6,7 1,3,8,7,5,2,4,6 1,2,8,4,6,3,7,5 1,4,5,6,3,2,7,8 1,3,5,8,7,6,2,4 1,6,5,2,3,7,4,8 1,2,3,4,8,6,5,7 1,2,6,8,3,7,4,5 1,3,2,5,4,7,8,6 1,3,4,6,5,2,8,7 1,2,7,6,3,4,5,8 1,4,6,8,3,2,5,7 1,5,3,8,2,4,7,6 1,5,4,3,8,7,2,6 1,3,7,6,4,8,2,5 1,4,7,3,2,6,8,5 CW and CTW ---------- d = 1: 1 order 1 d = 2: 1 order 1,2 d = 3: 2 orders 1,2,3 1,3,2 d = 4 for CW: 6 orders 1,2,3,4 1,2,4,3 1,3,2,4 1,3,4,2 1,4,3,2 1,4,2,3 d = 4 for CTW: 4 orders 1,2,3,4 1,2,4,3 1,3,4,2 1,4,3,2 d = 5 for CW: 24 orders 1,2,3,4,5 1,2,3,5,4 1,2,4,3,5 1,2,4,5,3 1,2,5,4,3 1,2,5,3,4 1,3,2,4,5 1,3,2,5,4 1,3,4,2,5 1,3,4,5,2 1,3,5,4,2 1,3,5,2,4 1,4,3,2,5 1,4,3,5,2 1,4,2,3,5 1,4,2,5,3 1,4,5,2,3 1,4,5,3,2 1,5,3,4,2 1,5,3,2,4 1,5,4,3,2 1,5,4,2,3 1,5,2,4,3 1,5,2,3,4 d = 5 for CTW: 8 orders 1,2,3,4,5 1,2,3,5,4 1,2,4,5,3 1,3,4,2,5 1,3,5,2,4 1,4,5,2,3 1,5,4,3,2 1,5,2,4,3 d > 5 for CW omitted (exact formula known, verified up to d=5) d = 6 for CTW, approximate: 12 orders (CW needs 5! = 120 orders) 1,6,2,3,4,5 1,5,2,6,4,3 1,3,2,5,4,6 1,2,4,6,3,5 1,4,6,5,2,3 1,5,6,3,2,4 1,5,4,2,3,6 1,4,3,2,6,5 1,6,4,5,3,2 1,2,3,5,6,4 1,5,3,4,6,2 1,3,6,4,2,5 d = 7 for CTW, approximate: 25 orders (CW needs 6! = 720 orders) 1,4,6,5,7,3,2 1,5,2,7,6,3,4 1,3,6,2,4,7,5 1,7,4,2,3,5,6 1,6,7,2,5,4,3 1,2,6,4,5,3,7 1,2,7,3,5,4,6 1,6,5,2,3,4,7 1,5,7,4,6,2,3 1,3,7,6,5,4,2 1,3,4,2,5,6,7 1,5,4,6,3,7,2 1,6,7,4,3,5,2 1,3,5,4,7,2,6 1,4,7,3,2,6,5 1,5,6,3,2,7,4 1,4,2,5,7,3,6 1,3,2,6,7,4,5 1,5,2,3,4,6,7 1,4,6,3,5,7,2 1,3,7,5,6,2,4 1,7,5,6,3,4,2 1,7,4,2,6,3,5 1,2,5,3,7,4,6 1,4,7,5,3,2,6 d = 8 for CTW, approximate: 50 orders (CW needs 7! = 5040 orders) 1,3,6,7,8,4,2,5 1,2,3,7,5,4,6,8 1,4,3,8,5,6,2,7 1,4,7,8,2,3,5,6 1,5,8,2,6,4,3,7 1,6,2,3,4,5,8,7 1,4,2,7,5,6,3,8 1,2,6,8,7,3,5,4 1,5,6,7,4,2,3,8 1,3,2,5,8,4,6,7 1,3,8,7,5,2,4,6 1,2,8,4,6,3,7,5 1,4,5,6,3,2,7,8 1,3,5,8,7,6,2,4 1,6,5,2,3,7,4,8 1,2,3,4,8,6,5,7 1,2,6,8,3,7,4,5 1,3,2,5,4,7,8,6 1,3,4,6,5,2,8,7 1,2,7,6,3,4,5,8 1,4,6,8,3,2,5,7 1,5,3,8,2,4,7,6 1,5,4,3,8,7,2,6 1,3,7,6,4,8,2,5 1,4,7,3,2,6,8,5 5,2,4,8,7,6,3,1 8,6,4,5,7,3,2,1 7,2,6,5,8,3,4,1 6,5,3,2,8,7,4,1 7,3,4,6,2,8,5,1 7,8,5,4,3,2,6,1 8,3,6,5,7,2,4,1 4,5,3,7,8,6,2,1 8,3,2,4,7,6,5,1 7,6,4,8,5,2,3,1 6,4,2,5,7,8,3,1 5,7,3,6,4,8,2,1 8,7,2,3,6,5,4,1 4,2,6,7,8,5,3,1 8,4,7,3,2,5,6,1 7,5,6,8,4,3,2,1 5,4,7,3,8,6,2,1 6,8,7,4,5,2,3,1 7,8,2,5,6,4,3,1 8,5,4,3,6,7,2,1 7,5,2,3,8,6,4,1 6,7,4,2,8,3,5,1 6,2,7,8,3,4,5,1 5,2,8,4,6,7,3,1 5,8,6,2,3,7,4,1 W and TW -------- W is always d!, that is, all permutations TW is always ceil(n/2) binomial(n,floor(n/2)); we verify this formula: d = 1: 1 order 1 d = 2: 2 orders 1,2 2,1 d = 3: 6 orders 1,2,3 1,3,2 2,1,3 2,3,1 3,2,1 3,1,2 d = 4: 12 orders 1,2,3,4 1,3,2,4 1,4,3,2 2,1,4,3 2,3,1,4 2,4,3,1 3,2,4,1 3,1,4,2 3,4,1,2 4,2,1,3 4,3,2,1 4,1,2,3 d = 5: 30 orders 2,3,4,1,5 5,4,3,2,1 1,2,5,3,4 4,5,2,1,3 3,1,4,5,2 1,5,4,3,2 5,3,2,4,1 4,1,2,3,5 4,2,3,5,1 2,5,3,1,4 3,5,1,2,4 1,4,3,2,5 4,3,5,1,2 5,2,4,3,1 5,1,3,4,2 2,1,3,4,5 3,2,1,5,4 2,4,1,5,3 1,5,2,4,3 1,3,2,4,5 3,4,2,1,5 1,4,5,2,3 3,5,4,2,1 5,4,1,3,2 5,2,1,3,4 3,4,1,5,2 2,4,5,3,1 3,1,5,4,2 2,1,4,5,3 2,3,5,4,1 d = 6: 60 orders 3,1,2,4,5,6 4,5,6,3,1,2 5,6,2,4,1,3 2,3,5,1,6,4 6,2,3,4,1,5 5,4,2,6,3,1 1,2,6,4,5,3 1,3,4,6,5,2 2,6,1,5,3,4 3,2,6,1,5,4 5,2,6,3,1,4 3,4,5,6,2,1 5,1,3,6,4,2 3,5,1,2,4,6 1,4,2,6,3,5 5,3,4,2,1,6 6,4,3,2,5,1 1,6,5,4,2,3 6,3,1,2,4,5 6,5,3,2,4,1 4,3,2,1,6,5 2,1,5,4,6,3 4,1,5,6,3,2 1,5,4,3,6,2 4,6,1,3,2,5 2,4,1,5,3,6 4,2,5,3,6,1 2,5,1,6,4,3 3,6,5,1,2,4 6,1,4,2,3,5 4,1,3,5,2,6 5,1,2,3,4,6 1,3,6,5,4,2 2,3,1,6,5,4 5,6,1,2,4,3 3,1,5,4,6,2 2,4,6,3,5,1 1,4,6,5,3,2 6,4,2,5,3,1 5,3,2,4,6,1 2,4,3,5,1,6 2,6,5,1,4,3 4,3,6,1,5,2 3,2,4,6,1,5 3,6,4,5,2,1 5,3,6,4,1,2 4,5,1,2,3,6 2,1,4,3,5,6 6,4,5,2,1,3 2,5,4,1,6,3 6,3,2,5,4,1 1,5,6,3,2,4 6,1,2,3,4,5 4,3,1,2,6,5 6,5,4,1,3,2 5,2,3,6,4,1 2,1,3,5,6,4 1,6,3,4,5,2 2,6,4,1,3,5 4,5,3,1,6,2 d = 7: 140 orders 3,6,5,2,1,4,7 1,6,2,4,7,3,5 7,5,3,2,4,1,6 2,1,5,3,7,6,4 5,2,1,6,4,7,3 4,6,5,7,1,3,2 7,2,5,4,6,3,1 1,5,4,3,2,6,7 1,4,2,7,3,6,5 4,2,7,5,1,6,3 3,4,2,5,7,6,1 3,5,6,4,2,1,7 2,6,7,4,5,1,3 6,5,1,3,7,4,2 5,1,2,4,3,7,6 2,7,4,3,6,5,1 1,3,5,4,7,2,6 4,5,7,1,3,6,2 1,2,4,6,5,3,7 4,1,5,6,7,2,3 6,4,3,7,2,1,5 3,1,2,6,7,5,4 3,7,4,6,1,5,2 7,4,3,5,6,1,2 6,3,1,5,4,2,7 5,6,3,7,2,4,1 2,3,6,1,5,7,4 5,7,1,2,6,3,4 7,3,6,5,4,2,1 2,4,1,5,7,3,6 1,7,6,2,5,4,3 6,1,3,4,5,7,2 3,2,4,1,6,7,5 4,3,1,6,7,2,5 2,5,7,6,3,1,4 7,1,3,4,2,5,6 4,7,2,1,6,5,3 7,6,2,3,1,4,5 5,3,2,7,1,4,6 6,3,4,1,2,5,7 5,4,2,7,3,6,1 7,3,5,1,2,6,4 2,1,3,4,5,7,6 5,7,6,2,1,3,4 2,4,6,1,3,5,7 2,1,7,6,4,3,5 5,6,4,3,7,2,1 6,4,7,3,5,2,1 3,5,7,4,1,2,6 2,7,1,3,5,6,4 4,7,6,1,5,3,2 4,5,6,1,2,7,3 2,3,7,6,4,1,5 4,7,5,6,3,2,1 3,1,4,7,5,2,6 5,6,2,4,7,3,1 5,2,3,4,6,1,7 6,1,4,7,2,5,3 2,3,5,1,6,7,4 5,1,3,7,6,4,2 4,5,1,7,6,3,2 5,4,3,2,1,6,7 6,2,1,3,4,7,5 3,4,7,1,6,5,2 4,7,1,6,3,5,2 6,5,7,3,1,4,2 3,4,5,1,6,7,2 2,3,1,7,4,6,5 7,6,5,4,2,1,3 7,3,2,4,5,6,1 3,1,6,7,5,4,2 2,7,6,5,4,3,1 1,5,7,6,2,3,4 3,6,2,4,1,5,7 3,7,1,6,4,2,5 1,5,6,2,7,4,3 3,6,7,1,2,5,4 1,2,6,5,3,7,4 7,5,2,1,3,6,4 1,3,7,5,4,6,2 4,1,7,2,5,6,3 6,2,3,7,5,4,1 1,6,5,4,3,2,7 4,3,6,2,7,1,5 5,3,4,6,1,7,2 6,2,4,5,1,7,3 5,2,4,1,6,3,7 2,4,3,7,1,6,5 6,7,4,2,3,1,5 4,1,3,2,7,5,6 5,3,1,2,4,6,7 2,7,3,1,6,5,4 7,1,2,5,4,3,6 4,6,2,3,5,1,7 7,1,4,5,2,3,6 7,5,4,3,2,1,6 4,2,5,6,3,7,1 1,6,7,5,4,2,3 2,5,6,3,7,1,4 1,4,6,2,7,5,3 3,5,6,1,2,7,4 7,6,3,2,1,5,4 7,1,5,3,6,4,2 5,2,7,3,6,4,1 1,2,6,7,3,5,4 4,6,1,5,2,7,3 2,4,6,7,1,5,3 4,3,5,7,1,2,6 2,3,6,5,1,4,7 1,5,3,6,4,7,2 2,6,5,7,4,1,3 5,1,6,7,3,2,4 4,7,3,2,6,1,5 2,5,1,7,4,3,6 5,2,4,3,7,1,6 7,3,6,4,1,5,2 6,1,4,3,5,2,7 6,1,3,2,5,4,7 4,6,5,2,1,3,7 4,2,7,6,3,5,1 5,2,3,6,4,7,1 7,4,6,5,1,3,2 2,1,4,3,5,6,7 2,3,7,5,1,6,4 2,4,3,6,1,5,7 7,6,1,3,4,5,2 1,7,4,3,5,6,2 5,1,7,4,2,3,6 6,4,3,5,7,2,1 4,1,5,2,7,6,3 1,7,2,4,5,3,6 7,5,3,6,2,1,4 4,5,7,2,6,3,1 5,2,6,1,4,3,7 7,6,5,1,3,4,2 6,1,7,4,5,2,3 3,1,7,2,4,5,6 3,4,1,5,6,7,2 2,6,7,1,4,3,5 2,1,3,5,7,4,6 d = 8: 280 orders per the formula, not verified